129
edits
(Created page with "Formula One chassis and suspension design defines the vehicle’s mechanical grip envelope, vertical load control, and its interaction with aerodynamic structures. The system is not merely structural; it governs pitch, ride, and roll behaviour under aerodynamic and tyre-dominated force regimes at frequencies up to 20 Hz. Advanced design must account for: * Torsional and bending stiffness of the monocoque * Multibody suspension kinematics and compliance * Ride height...") |
mNo edit summary |
||
Line 182: | Line 182: | ||
== References == | == References == | ||
<references /> | <references /> | ||
* | == References == | ||
* SAE Technical Paper 2003-01- | == References == | ||
* | * FIA (2025). 2025 Formula 1 Technical Regulations (Issue 01). https://www.fia.com/sites/default/files/fia_2025_formula_1_technical_regulations_-_issue_01_-_2024-12-11_1.pdf | ||
* | * FIA (2025). 2026 Formula 1 Regulations — Section C: Technical Regulations (Issue 12). https://api.fia.com/system/files/documents/fia_2026_f1_regulations_-_section_c_technical_-_iss_12_-_2025-06-10.pdf | ||
* | * Milliken, W. F., & Milliken, D. L. (1995). *Race Car Vehicle Dynamics*. SAE International. ISBN 978-0768001216 | ||
* | * Park, J., Guenther, D., & Heydinger, G. (2003). “Kinematic Suspension Model Applicable to Dynamic Full Vehicle Simulation.” *SAE Technical Paper* 2003-01-0859. https://saemobilus.sae.org/papers/kinematic-suspension-model-applicable-dynamic-full-vehicle-simulation-2003-01-0859 (doi:10.4271/2003-01-0859) | ||
* | * Edara, R. (2004). “Effective Use of Multibody Dynamics Simulation in Vehicle Development.” *SAE Technical Paper* 2004-01-1547. https://www.sae.org/publications/technical-papers/content/2004-01-1547/ (doi:10.4271/2004-01-1547) | ||
* | * Singh, R. (2005). “A Downforce Optimization Study for a Racing Car Shape.” *SAE Technical Paper* 2005-01-0545. https://www.sae.org/publications/technical-papers/content/2005-01-0545/ (doi:10.4271/2005-01-0545) | ||
* Smith, M. C. (2002). “Synthesis of Mechanical Networks: The Inerter.” *IEEE Trans. Automatic Control*, 47(10), 1648–1662. https://www-control.eng.cam.ac.uk/foswiki/pub/Main/MalcolmSmith/cued_control_859.pdf (doi:10.1109/TAC.2002.803532) | |||
* Papageorgiou, C., & Smith, M. C. (2009). “Experimental Testing and Analysis of Inerter Devices.” *ASME J. Dynamic Systems, Measurement, and Control*, 131(1), 011001. https://asmedigitalcollection.asme.org/dynamicsystems/article/131/1/011001/466043 (doi:10.1115/1.2969253) | |||
* Sundström, P. (2016). “Virtual Vehicle Kinematics and Compliance Test Rig.” *1st Japanese Modelica Conference*. https://ep.liu.se/ecp/124/004/ecp16124004.pdf | |||
* Danielsson, O. (2014). *Influence of Body Stiffness on Vehicle Dynamics — Modeling and Validation*. Chalmers University of Technology. https://publications.lib.chalmers.se/records/fulltext/219391/219391.pdf | |||
* Singh, K. B. (2019). “Literature Review and Fundamental Approaches for Vehicle and Tire State Estimation.” *Vehicle System Dynamics*, 57(10), 1463–1512. https://www.tandfonline.com/doi/abs/10.1080/00423114.2018.1544373 (doi:10.1080/00423114.2018.1544373) | |||
* Miloradović, D. (2022). “Identification of Vehicle System Dynamics from the Aspect of Steering–Suspension Interaction.” *Machines*, 10(1), 46. https://www.mdpi.com/2075-1702/10/1/46 (doi:10.3390/machines10010046) | |||
* Multimatic. “DSSV Damping Technology (motorsport applications).” https://www.multimatic.com/motorsports/multimatic-racing-dampers | |||
* Morse Measurements. “A Case Study in K&C Testing.” https://www.morsemeasurements.com/a-case-study-in-kc-testing/ | |||
[[Category:Chassis Design]] | [[Category:Chassis Design]] |